Sonification / Listening Up: Large Scale Sound Installation At MIT

Outline

Introduction
Project genesis
Sound construction details
Final sound translation
The installation: implementation and challenges
Summary / invitation

Ion-acoustic waves

Naturally occurring plasma phenomena, especially in the ionosphere One example of a plasma instability (free energy sink)

Simple model:

1-D, non-equilibrium

Uniform, field-free plasma (no background E, B)

Fluid approximation (e.g. magnetohydrodynamics – MHD)

$$\rho_0 \frac{\partial V_1}{\partial t} = -\nabla p_1 \quad \frac{\partial}{\partial t} \rho_1 = -\rho_0 \nabla \cdot V_1$$
$$p_1 = p_0 \frac{\rho_1}{\rho_0}$$

Solution is compression (ion-acoustic) wave $ho_1 = \hat{
ho_1} \sin(kx - \omega t)$

$$\rho_1 = \hat{\rho_1} \sin(kx - \omega t)$$

$$\frac{\omega}{k} = \sqrt{\kappa \frac{T_e + T_i}{m_i}}$$

Ion-acoustic spectrum in the ionosphere

Simple 1-D model result

True situation: with Landau damping

Incoherent Scatter Theory

Robust physical theory (1958-1962) predicts spectral variation with parameters

Incoherent Scatter Theory

Robust physical theory (1958-1962) predicts spectral variation with parameters

Parts e and f show the effects of the angle to the magnetic field and ion-neutral collisions.

Parts a and b show the ratios of the spectrum with the corresponding electron density. Part a shows that the wide Gaussian spectrum occurs only for very small electron densities. At higher densities which can be easily seen with a radar, the power shifts into a narrow line, resolved in (b).

Part d shows the effects of various ratios of different ions with the other parameters as in part c with $T_e/T_i = 1$.

Observing the Ionosphere with Radar

Iterative fitting reproduces the shape of the ionosphere

Incoherent Scatter

Complex signal processing extracts the frequency spectrum

Noise like signal received
Only ~0.000000000000000001% of the transmitted power is returned!

High power pulse

Very sensitive receiver

Time

Virtual Millstone Hill Radar

Developed by S.-R. Zhang, J. Holt under NSF Space Weather grant Based on 4 decade+ Millstone Hill incoherent scatter database Provides empirical values of density, temperature, velocity

Ion-acoustic sound construction

Idea:

Drive IS theory calculation with Millstone Hill virtual radar model's physical parameters

Construct incoherent scatter ion-acoustic spectrum as function of altitude, time

Millstone Hill VMHR does not yet model composition – use International Reference Ionosphere IRI-95 model for ion composition

Assume geomagnetically quiet day: May 9, 2005

Allow parameters to change every 15 minutes over 24 hour period, and every 100 km over 100 – 700 km altitude

Ion-acoustic sound construction

Divide IS spectrum into 8 channels (2 kHz -> 16 kHz)

Output pure tone, scaled in amplitude, for each channel

8 freqs x 7 alts = 56 channels

Reduce to 35 channels (high freqs not present at lower altitudes)

Turn over results for further artistic adjustment

